Central Line-Associated Bloodstream Infection in Children
Central Line-Associated Bloodstream Infection in Children
Catheter salvage is attractive in many cases because of the cost and inconvenience of replacement. However, catheter removal substantially reduces the risk of relapse, persistent bacteremia or fungemia, and metastatic infection. The risk of relapse differs by device and organism. For ports, the risk may be >50%, probably related to the complex structure and high internal surface area of the port housing.
Salvage should not be attempted if the catheter is no longer essential for clinical care. Timely removal of the CVC is also indicated for infections complicated by sepsis, tunnel or port pocket infection, endocarditis or suppurative thrombophlebitis, relapse of CLABSI with an identical organism, and infection with mycobacteria, fungi such as Candida spp., S. aureus, Bacillus cereus and some multiresistant bacteria. With attempted catheter salvage, candida and mycobacteria CRBSIs have treatment failure rates over 70%, and S. aureus and B. cereus infections have relapse rates around 50% with potentially catastrophic complications. The catheter should therefore be removed in all the above cases, except where replacement will be so difficult that the high risk of treatment failure is considered justifiable.
It is appropriate to consider catheter salvage in other patients in view of the relatively high success rates of salvage therapy and potential hazards of CVC replacement. Catheter replacement is costly, carries risks associated with anesthesia and local trauma, does not reduce the risk of new CLABSI (the risk may actually be increased immediately after replacement) and venous occlusion can preclude future use of that insertion site. If salvage is attempted, the patient should be closely observed for the development of acute complications, persistent infection or sepsis. The catheter should be removed if complications develop or if bacteremia or fungemia persists after 72 hours of appropriate antibiotic therapy.
After catheter removal, reinsertion of a new long-term CVC should ideally be delayed until blood cultures collected after removal are negative to prevent immediate contamination of the new device. This delay might be unnecessary for patients in whom clearance of bacteremia or fungemia is documented before catheter removal. The absolute risk of contamination of the new device is unknown in either case, so the decision of whether to delay reinsertion should take into account the potential clinical impact of either delayed reinsertion or colonization of the new catheter. The use of guidewire catheter exchange in the management of CLABSI is controversial. The technique has the benefit of reducing venous occlusion and mechanical complications of new device insertion, but it may be associated with contamination of the new catheter and can be technically difficult in young children. Guidewire replacement with an antimicrobial impregnated catheter could potentially be beneficial to prevent colonization of the new device. One retrospective study of nontunneled impregnated devices reported excellent outcomes, but there are no prospective studies supporting the method, and appropriate devices for tunneled use are not yet available.
Catheter Salvage
Catheter salvage is attractive in many cases because of the cost and inconvenience of replacement. However, catheter removal substantially reduces the risk of relapse, persistent bacteremia or fungemia, and metastatic infection. The risk of relapse differs by device and organism. For ports, the risk may be >50%, probably related to the complex structure and high internal surface area of the port housing.
Salvage should not be attempted if the catheter is no longer essential for clinical care. Timely removal of the CVC is also indicated for infections complicated by sepsis, tunnel or port pocket infection, endocarditis or suppurative thrombophlebitis, relapse of CLABSI with an identical organism, and infection with mycobacteria, fungi such as Candida spp., S. aureus, Bacillus cereus and some multiresistant bacteria. With attempted catheter salvage, candida and mycobacteria CRBSIs have treatment failure rates over 70%, and S. aureus and B. cereus infections have relapse rates around 50% with potentially catastrophic complications. The catheter should therefore be removed in all the above cases, except where replacement will be so difficult that the high risk of treatment failure is considered justifiable.
It is appropriate to consider catheter salvage in other patients in view of the relatively high success rates of salvage therapy and potential hazards of CVC replacement. Catheter replacement is costly, carries risks associated with anesthesia and local trauma, does not reduce the risk of new CLABSI (the risk may actually be increased immediately after replacement) and venous occlusion can preclude future use of that insertion site. If salvage is attempted, the patient should be closely observed for the development of acute complications, persistent infection or sepsis. The catheter should be removed if complications develop or if bacteremia or fungemia persists after 72 hours of appropriate antibiotic therapy.
After catheter removal, reinsertion of a new long-term CVC should ideally be delayed until blood cultures collected after removal are negative to prevent immediate contamination of the new device. This delay might be unnecessary for patients in whom clearance of bacteremia or fungemia is documented before catheter removal. The absolute risk of contamination of the new device is unknown in either case, so the decision of whether to delay reinsertion should take into account the potential clinical impact of either delayed reinsertion or colonization of the new catheter. The use of guidewire catheter exchange in the management of CLABSI is controversial. The technique has the benefit of reducing venous occlusion and mechanical complications of new device insertion, but it may be associated with contamination of the new catheter and can be technically difficult in young children. Guidewire replacement with an antimicrobial impregnated catheter could potentially be beneficial to prevent colonization of the new device. One retrospective study of nontunneled impregnated devices reported excellent outcomes, but there are no prospective studies supporting the method, and appropriate devices for tunneled use are not yet available.